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Introduction

I Great progress has been made in causal identification
research
I Given a causal graph, produces identifying functional of causal

effect (if identifiable)
I Easy-to-use software implementations available, e.g, the

causaleffect package in R (Tikka and Karvanen 2017)
I Identifiability only indicates the existence of an estimator

I Does not take into account the potential problems due to finite
data and parameter/model uncertainty



Example graph
I We studied (Helske, Tikka, and Karvanen 2021) how to

perform causal estimation with relatively small data under
the presence of trapdoor variable

I Y , X , Z , and W observed, dashed arrows are unobserved
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P(Y | do(X = x)) =
∑

W P(Y | x ,Z ,W )P(x | Z ,W )P(W )∑
W P(x | Z ,W )P(W )



General approach to estimation

I We estimate the full interventional distribution
P(Y | do(X = x)) by simultaneously estimating the terms of
the identifying functional via Bayesian methods.
I Takes into account the uncertainty in P(Y | do(X = x)) due to

parameter estimation
I Avoids the plug-in bias due to the potential nonlinearity of the

causal formula.
I However, we still need to figure out what to do with the

variable Z . . .



Trapdoor variable

P(Y | do(X = x)) =
∑

W P(Y | x ,Z ,W )P(x | Z ,W )P(W )∑
W P(x | Z ,W )P(W ) .

I Tian and Pearl (2002) show that in this graph
P(Y | do(X = x)) is functionally independent of Z .

I In practice we still must choose some value for Z which can
lead to bias.

I Here Z is a trapdoor variable with respect to the identifying
functional in this graph (for formal definition see Helske, Tikka,
and Karvanen (2021)).



Trapdoor variable in linear-Gaussian case
In a linear-Gaussian model, we have

W ∼ N(aw , s2
w ),

(X | Z = z ,W = w) ∼ N(ax + bxzz + bxww , s2
x ),

(Y | X = x ,Z = z ,W = w) ∼ N(ay + byxx + byzz + byww , s2
y ),

where parameters a·, b··, and s· are estimated from the data.

This yields

E (Y | do(X = x)) = ay + byw s2
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Simulation experiment

1. Fix the trapdoor variable Z to the constant z = 0.

2. Also estimate P(Z ) and use z = E (Z ).

3. As above, but estimate P(Z | X = x) and use
z = E (Z | X = x).

4. Use a constraint byz = (bxzbywbxw s2
w )/(b2

xw s2
w + s2

x ) so that
the contribution of z is fixed to zero (red term in previous slide
is zero).

5. Use a linear-Gaussian structural equation model (SEM).



Results (1000 replications from data generating process)
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