Hidden Markov models

A modern approach to transition analysis and process mining with Markov models: A tutorial with R

Abstract This chapter presents an introduction to Markovian modeling for the analysis of sequence data. Contrary to the deterministic approach seen in the previous sequence analysis chapters, Markovian models are probabilistic models, focusing on the transitions between states instead of studying sequences as a whole. The chapter provides an introduction to this method and differentiates between its most common variations: first-order Markov models, hidden Markov models, mixture Markov models, and mixture hidden Markov models.

seqHMM: Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series

Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and hidden Markov models.

Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R

Abstract Sequence analysis is being more and more widely used for the analysis of social sequences and other multivariate categorical time series data. However, it is often complex to describe, visualize, and compare large sequence data, especially when there are multiple parallel sequences per subject. Hidden (latent) Markov models (HMMs) are able to detect underlying latent structures and they can be used in various longitudinal settings: to account for measurement error, to detect unobservable states, or to compress information across several types of observations.

Combining Sequence Analysis and Hidden Markov Models in the Analysis of Complex Life Sequence Data

Abstract Life course data often consists of multiple parallel sequences, one for each life domain of interest. Multichannel sequence analysis has been used for computing pairwise dissimilarities and finding clusters in this type of multichannel (or multidimensional) sequence data. Describing and visualizing such data is, however, often challenging. We propose an approach for compressing, interpreting, and visualizing the information within multichannel sequences by finding (1) groups of similar trajectories and (2) similar phases within trajectories belonging to the same group.

Analysing Complex Life Sequence Data with Hidden Markov Modelling

Abstract When analysing complex sequence data with multiple channels (dimensions) and long observation sequences, describing and visualizing the data can be a challenge. Hidden Markov models (HMMs) and their mixtures (MHMMs) offer a probabilistic model-based framework where the information in such data can be compressed into hidden states (general life stages) and clusters (general patterns in life courses). We studied two different approaches to analysing clustered life sequence data with sequence analysis (SA) and hidden Markov modelling.

Minimum description length based hidden Markov model clustering for life sequence analysis

Abstract In this article, a model-based method for clustering life sequences is suggested. In the social sciences, model-free clustering methods are often used in order to find typical life sequences. The suggested method, which is based on hidden Markov models, provides principled probabilistic ranking of candidate clusterings for choosing the best solution. After presenting the principle of the method and algorithm, the method is tested with real life data, where it finds eight descriptive clusters with clear probabilistic structures.