Visualization

Can visualization alleviate dichotomous thinking? Effects of visual representations on the cliff effect

Abstract Common reporting styles for statistical results in scientific articles, such as p-values and confidence intervals (CI), have been reported to be prone to dichotomous interpretations, especially with respect to the null hypothesis significance testing framework. For example when the p-value is small enough or the CIs of the mean effects of a studied drug and a placebo are not overlapping, scientists tend to claim significant differences while often disregarding the magnitudes and absolute differences in the effect sizes.

ggstudent: Continuous Confidence Interval Plots using t-Distribution

Provides an extension to ‘ggplot2’ (Wickham, 2016, doi:10.1007/978-3-319-24277-4) for creating two types of continuous confidence interval plots (Violin CI and Gradient CI plots), typically for the sample mean. These plots contain multiple user-defined confidence areas with varying colours, defined by the underlying t-distribution used to compute standard confidence intervals for the mean of the normal distribution when the variance is unknown. Two types of plots are available, a gradient plot with rectangular areas, and a violin plot where the shape (horizontal width) is defined by the probability density function of the t-distribution.

Comparison of Attention Behaviour Across User Sets through Automatic Identification of Common Areas of Interest

Abstract Eye tracking is used to analyze and compare user behaviour within numerous domains, but long duration eye tracking experiments across multiple users generate millions of eye gaze samples, making the data analysis process complex. Usually the samples are labelled into Areas of Interest (AoI) or Objects of Interest (OoI), where the AoI approach aims to understand how a user monitors different regions of a scene while OoI identification uncovers distinct objects in the scene that attract user attention.