Can visualization alleviate dichotomous thinking? Effects of visual representations on the cliff effect
Abstract Common reporting styles for statistical results in scientific articles, such as p-values and confidence intervals (CI), have been reported to be prone to dichotomous interpretations, especially with respect to the null hypothesis significance testing framework. For example when the p-value is small enough or the CIs of the mean effects of a studied drug and a placebo are not overlapping, scientists tend to claim significant differences while often disregarding the magnitudes and absolute differences in the effect sizes.