Software

My R packages currently on CRAN.

bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R

Efficient methods for Bayesian inference of state space models via particle Markov chain Monte Carlo (MCMC) and MCMC based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, doi:10.1111/sjos.12492). Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with linear-Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported.

walker: Bayesian Generalized Linear Models with Time-Varying Coefficients

Bayesian generalized linear models with time-varying coefficients as in Helske (2020, arXiv:2009.07063). Gaussian, Poisson, and binomial observations are supported. The Markov chain Monte Carlo (MCMC) computations are done using Hamiltonian Monte Carlo provided by Stan, using a state space representation of the model in order to marginalise over the coefficients for efficient sampling. For non-Gaussian models, the package uses the importance sampling type estimators based on approximate marginal MCMC as in Vihola, Helske, Franks (2020, doi:10.

KFAS: Kalman Filter and Smoother for Exponential Family State Space Models

State space modelling is an efficient and flexible framework for statistical inference of a broad class of time series and other data. KFAS includes computationally efficient functions for Kalman filtering, smoothing, forecasting, and simulation of multivariate exponential family state space models, with observations from Gaussian, Poisson, binomial, negative binomial, and gamma distributions. See the paper by Helske (2017) doi:10.18637/jss.v078.i10 for details.

seqHMM: Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series

Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and hidden Markov models.

ggstudent: Continuous Confidence Interval Plots using t-Distribution

Provides an extension to ‘ggplot2’ (Wickham, 2016, doi:10.1007/978-3-319-24277-4) for creating two types of continuous confidence interval plots (Violin CI and Gradient CI plots), typically for the sample mean. These plots contain multiple user-defined confidence areas with varying colours, defined by the underlying t-distribution used to compute standard confidence intervals for the mean of the normal distribution when the variance is unknown. Two types of plots are available, a gradient plot with rectangular areas, and a violin plot where the shape (horizontal width) is defined by the probability density function of the t-distribution.