Panel Data

Estimating Causal Effects from Panel Data with Dynamic Multivariate Panel Models

Abstract Panel data are ubiquitous in scientific fields such as social sciences. Various modeling approaches have been presented for observational causal inference based on such data. Existing approaches typically impose restrictive assumptions on the data-generating process such as Gaussian responses or time-invariant effects, or they can only consider short-term causal effects. To surmount these restrictions, we present the dynamic multivariate panel model (DMPM) that supports time-varying, time-invariant, and individual-specific effects, multiple responses across a wide variety of distributions, and arbitrary dependency structures of lagged responses of any order.

dynamite: An R Package for Dynamic Multivariate Panel Models

Abstract dynamite is an R package for Bayesian inference of intensive panel (time series) data comprising of multiple measurements per multiple individuals measured in time. The package supports joint modeling of multiple response variables, time-varying and time-invariant effects, a wide range of discrete and continuous distributions, group-specific random effects, latent factors, and customization of prior distributions of the model parameters. Models in the package are defined via a user-friendly formula interface, and estimation of the posterior distribution of the model parameters takes advantage of state-of-the-art Markov chain Monte Carlo methods.