Sequential Monte Carlo

bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R

Abstract We present an R package bssm for Bayesian non-linear/non-Gaussian state space modelling. Unlike the existing packages, bssm allows for easy-to-use approximate inference for the latent states based on Gaussian approximations such as the Laplace approximation and the extended Kalman filter. The package accommodates also discretised diffusion latent state processes. The inference is based on fully automatic, adaptive Markov chain Monte Carlo (MCMC) on the hyperparameters, with optional importance sampling post-correction to eliminate any approximation bias.

bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R

Efficient methods for Bayesian inference of state space models via particle Markov chain Monte Carlo (MCMC) and MCMC based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, doi:10.1111/sjos.12492). Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with linear-Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported.

Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo

Abstract We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyper parameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelisation and additional flexibility in MCMC implementation.

Graphical model inference: Sequential Monte Carlo meets deterministic approximations

Abstract Approximate inference in probabilistic graphical models (PGMs) can be grouped into deterministic methods and Monte-Carlo-based methods. The former can often provide accurate and rapid inferences, but are typically associated with biases that are hard to quantify. The latter enjoy asymptotic consistency, but can suffer from high computational costs. In this paper we present a way of bridging the gap between deterministic and stochastic inference. Specifically, we suggest an efficient sequential Monte Carlo (SMC) algorithm for PGMs which can leverage the output from deterministic inference methods.