Publications

bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R

Abstract We present an R package bssm for Bayesian non-linear/non-Gaussian state space modelling. Unlike the existing packages, bssm allows for easy-to-use approximate inference for the latent states based on Gaussian approximations such as the Laplace approximation and the extended Kalman filter. The package accommodates also discretised diffusion latent state processes. The inference is based on fully automatic, adaptive Markov chain Monte Carlo (MCMC) on the hyperparameters, with optional importance sampling post-correction to eliminate any approximation bias.

Estimation of causal effects with small data in the presence of trapdoor variables

Abstract We consider the problem of estimating causal effects of interventions from observational data when well-known back-door and front-door adjustments are not applicable. We show that when an identifiable causal effect is subject to an implicit functional constraint that is not deducible from conditional independence relations, the estimator of the causal effect can exhibit bias in small samples. This bias is related to variables that we call trapdoor variables.

Can visualization alleviate dichotomous thinking? Effects of visual representations on the cliff effect

Abstract Common reporting styles for statistical results in scientific articles, such as p-values and confidence intervals (CI), have been reported to be prone to dichotomous interpretations, especially with respect to the null hypothesis significance testing framework. For example when the p-value is small enough or the CIs of the mean effects of a studied drug and a placebo are not overlapping, scientists tend to claim significant differences while often disregarding the magnitudes and absolute differences in the effect sizes.

A nonlinear mixed model approach to predict energy expenditure from heart rate

Abstract Objective. Heart rate (HR) monitoring provides a convenient and inexpensive way to predict energy expenditure (EE) during physical activity. However, there is a lot of variation among individuals in the EE-HR relationship, which should be taken into account in predictions. The objective is to develop a model that allows the prediction of EE based on HR as accurately as possible and allows an improvement of the prediction using calibration measurements from the target individual.

By Lauri Kortelainen, Jouni Helske, Taija Finni, Lauri Mehtätalo, Olli Tikkanen and Salme Kärkkäinen in Mixed Models

April 8, 2021

Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo

Abstract We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyper parameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelisation and additional flexibility in MCMC implementation.